Tuesday, 31 May 2016

3D Printed Car

3D Printed Car

The latest technology inventions in 3d printing are rapidly changing how things are being made.
It's an emerging technology that is an alternative to the traditional tooling and machining processes used in manufacturing.

At the International Manufacturing Technology Show in Chicago, a little known Arizona-based car maker created a media sensation by manufacturing a car at the show.

It was a full scale, fully functional car that was 3d printed in 44 hours and assembled in 2 days. The video below shows the car being made.

image of Strati 3d printer car
The car is called a "Strati", Italian for layers, so named by it's automotive designer Michele Anoè because the entire structure of the car is made from layers of acrylonitrile butadiene styrene (A.B.S.)with reinforced carbon fiber into a single unit.

The average car has more than 20,000 parts but this latest technology reduces the number of parts to 40 including all the mechanical components.

“The goal here is to get the number of parts down, and to drop the tooling costs to almost zero.” said John B. Rogers Jr., chief executive of Local Motors, a Princeton and Harvard-educated U.S. Marine.
“Cars are ridiculously complex,“ he added, referring to the thousands of bits and pieces that are sourced, assembled and connected to make a vehicle.

"It's potentially a huge deal," said Jay Baron, president of the Center for Automotive Research, noting that the material science and technology used by Local Motors is derived from their partnership with the U.S. Department of Energy’s Manufacturing Demonstration Facility at the Oak Ridge National Laboratory in Oak Ridge,Tennessee.

This technology can use a variety of metal, plastic or composite materials to manufacture anything in intricate detail.

People tend to want what they want, when they want it, where they want it, and how they want it, which makes this technology disruptive in the same way digital technologies used by companies like Amazon and Apple disrupted newspaper, book and music publishers.

Imagine if you could customize and personalize your new car online and pick it up or have it delivered to you the next day at a fraction of the cost of buying one from a dealership?
What if you could make a fender for a Porsche, or a tail light for a Honda, for a fraction of the cost of buying from a parts supplier? How revolutionary would that be for the automotive industry?
It's already happening.

Jay Leno, the former Tonight Show Host and avid car enthusiast is famous for his collection of vintage automobiles.


One of the challenges with collecting antique cars is replacing parts. You can't buy them because they're obsolete and having a machinist tool the part doesn't always work and often requires costly modifications until the part fits.

So Leno uses 3d printing technology to make parts for his cars. "These incredible devices allow you to make the form you need to create almost any part", says Leno.

John B. Rogers Jr. believes that in the near future a car will be made in just 60 minutes.

The company is already organizing a worldwide network of "Microfactories" where you can order and pickup your personalized, customized car.

Sources: localmotors.com; popularmechanics.com
- See more at: http://www.inventor-strategies.com/Latest-technology-inventions.html#sthash.Z70zlIuX.dpuf

Monday, 30 May 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things'

Harnessing solar and wind energy in one device could power the 'Internet of Things'


Hybrid solar and wind harvesting cells on the top of this model house collect enough energy to light it up inside.
Credit: American Chemical Society
The "Internet of Things" could make cities "smarter" by connecting an extensive network of tiny communications devices to make life more efficient. But all these machines will require a lot of energy. Rather than adding to the global reliance on fossil fuels to power the network, researchers say they have a new solution. Their report on a single device that harvests wind and solar energy appears in the journal ACS Nano.
Computer industry experts predict that tens of billions of gadgets will make up the Internet of Things within just five years, according to news reports. They'll be in homes, syncing coffee makers to alarm clocks. They'll be in buildings, managing lights and air temperature. But they'll also require energy to run. Sustainably generating more energy in cities close to where the devices will be used is challenging. Cities don't have much space for towering wind turbines, for example. Ya Yang, Zhong Lin Wang and colleagues wanted to find a better way to power smart cities.
For the first time, the researchers have integrated two energy harvesting technologies in one: a silicon solar cell and a nanogenerator that can convert wind energy into electrical output. The solar cell component of the system delivers 8 milliWatts of power output (1 milliWatt can light up 100 small LEDs). The wind harvesting component delivers up to 26 milliWatts. Together, under simulated sun and wind conditions, four devices on the roof of a model home could turn on the LEDs inside and power a temperature-humidity sensor. Installed in large numbers on real rooftops, the hybrid device could help enable smart cities.

Story Source:
The above post is reprinted from materials provided by American Chemical SocietyNote: Materials may be edited for content and length.

Journal Reference:
  1. Shuhua Wang, Xue Wang, Zhong Lin Wang, Ya Yang. Efficient Scavenging of Solar and Wind Energies in a Smart CityACS Nano, 2016; DOI: 10.1021/acsnano.6b02575

Cite This Page:
American Chemical Society. "Harnessing solar and wind energy in one device could power the 'Internet of Things'." ScienceDaily. ScienceDaily, 25 May 2016. <www.sciencedaily.com/releases/2016/05/160525121225.htm>

.



Sunday, 29 May 2016

Fast, stretchy circuits could yield new wave of wearable electronics

Fast, stretchy circuits could yield new wave of wearable electronics


Fabricated in interlocking segments like a 3-D puzzle, the new integrated circuits could be used in wearable electronics that adhere to the skin like temporary tattoos. Because the circuits increase wireless speed, these systems could allow health care staff to monitor patients remotely, without the use of cables and cords.
Credit: Image courtesy of Yei Hwan Jung and Juhwan Lee/University of Wisconsin-Madison
The consumer marketplace is flooded with a lively assortment of smart wearable electronics that do everything from monitor vital signs, fitness or sun exposure to play music, charge other electronics or even purify the air around you -- all wirelessly.
Now, a team of University of Wisconsin-Madison engineers has created the world's fastest stretchable, wearable integrated circuits, an advance that could drive the Internet of Things and a much more connected, high-speed wireless world.
Led by Zhenqiang "Jack" Ma, the Lynn H. Matthias Professor in Engineering and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison, the researchers published details of these powerful, highly efficient integrated circuits today, May 27, 2016, in the journal Advanced Functional Materials.
The advance is a platform for manufacturers seeking to expand the capabilities and applications of wearable electronics -- including those with biomedical applications -- particularly as they strive to develop devices that take advantage of a new generation of wireless broadband technologies referred to as 5G.
With wavelength sizes between a millimeter and a meter, microwave radio frequencies are electromagnetic waves that use frequencies in the .3 gigahertz to 300 gigahertz range. That falls directly in the 5G range.
In mobile communications, the wide microwave radio frequencies of 5G networks will accommodate a growing number of cellphone users and notable increases in data speeds and coverage areas.
In an intensive care unit, epidermal electronic systems (electronics that adhere to the skin like temporary tattoos) could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.
What makes the new, stretchable integrated circuits so powerful is their unique structure, inspired by twisted-pair telephone cables. They contain, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.
This serpentine shape -- formed in two layers with segmented metal blocks, like a 3-D puzzle -- gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference and, at the same time, confine the electromagnetic waves flowing through them, almost completely eliminating current loss. Currently, the researchers' stretchable integrated circuits can operate at radio frequency levels up to 40 gigahertz.
And, unlike other stretchable transmission lines, whose widths can approach 640 micrometers (or .64 millimeters), the researchers' new stretchable integrated circuits are just 25 micrometers (or .025 millimeters) thick. That's tiny enough to be highly effective in epidermal electronic systems, among many other applications.
Ma's group has been developing what are known as transistor active devices for the past decade. This latest advance marries the researchers' expertise in both high-frequency and flexible electronics.
"We've found a way to integrate high-frequency active transistors into a useful circuit that can be wireless," says Ma, whose work was supported by the Air Force Office of Scientific Research. "This is a platform. This opens the door to lots of new capabilities."

Story Source:
The above post is reprinted from materials provided by University of Wisconsin-Madison. The original item was written by Renee Meiller. Note: Materials may be edited for content and length.

Cite This Page:

University of Wisconsin-Madison. "Fast, stretchy circuits could yield new wave of wearable electronics." ScienceDaily. ScienceDaily, 27 May 2016.<www.sciencedaily.com/releases/2016/05/160527190522.htm>.

Saturday, 28 May 2016

The brain needs cleaning to stay healthy

The brain needs cleaning to stay healthy


Research led by the Achucarro Basque Center for Neuroscience, the University of the Basque Country (UPV/EHU), and the Ikerbasque Foundation has revealed the mechanisms that keep the brain clean during neurodegenerative diseases.
When neurons die, their debris need to be quickly removed in order for the surrounding brain tissue to continue to function properly. Elimination of the neuron corpses, in a process called phagocytosis, is carried out by highly specialized cells in the brain called microglia. These small cells have many ramifications that are in constant motion and are specially equipped to detect and destroy any foreign element, including dead neurons. Or so it was thought until now.
This study, publishing May 26, 2016 in PLOS Biology, investigates, for the first time, the process of neuronal death and microglial phagocytosis in the diseased brain. To this end, scientists collected brain samples from epilepsy patients at University Hospital of Cruces and from epileptic mice.
It is known that during epilepsy-associated seizures, neurons die. However, contrary to what happens in the healthy brain, during epilepsy, microglia seem to be "blind" and unable to find the dead neurons and to destroy them. Their behavior is abnormal. Therefore, dead neurons cannot be eliminated and accumulate, spreading the damage to neighboring neurons and triggering an inflammatory response that worsens the brain injury.
This discovery opens a new avenue to explore therapies that could alleviate the effects of brain diseases. In fact, the research group that undertook these studies is currently developing drugs, hoping to boost this cleaning process -phagocytosis- and help in the treatment of epilepsy.
The study was led by Dr. Amanda Sierra, director of the Laboratory of Glial Cell Biology at the Achucarro Basque Center for Neuroscience. The experimental work was mainly carried out by Oihane Abiega, Sol Beccari, and Irune Diaz Aparicio. Other scientists from Achucarro and UPV/EHU, including Juan Manuel Encinas, Jorge Valero, Victor Sanchez-Zafra, and Inaki Paris, also contributed to the study
This international research effort was coordinated from the Basque Country, and scientists from CIC bioGUNE (Spain), the University of Bordeaux (France), the University of Southampton (UK), Laval University (Canada), and Baylor College of Medicine (USA) also took part.

Story Source:
The above post is reprinted from materials provided by PLOSNote: Materials may be edited for content and length.

Journal Reference:
  1. Oihane Abiega, Sol Beccari, Irune Diaz-Aparicio, Agnes Nadjar, Sophie Layé, Quentin Leyrolle, Diego Gómez-Nicola, María Domercq, Alberto Pérez-Samartín, Víctor Sánchez-Zafra, Iñaki Paris, Jorge Valero, Julie C. Savage, Chin-Wai Hui, Marie-Ève Tremblay, Juan J. P. Deudero, Amy L. Brewster, Anne E. Anderson, Laura Zaldumbide, Lara Galbarriatu, Ainhoa Marinas, Maria dM. Vivanco, Carlos Matute, Mirjana Maletic-Savatic, Juan M. Encinas, Amanda Sierra. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis UncouplingPLOS Biology, 2016; 14 (5): e1002466 DOI:10.1371/journal.pbio.1002466

Cite This Page:
PLOS. "The brain needs cleaning to stay healthy." ScienceDaily. ScienceDaily, 26 May 2016. <www.sciencedaily.com/releases/2016/05/160526151742.htm>

.

Thursday, 26 May 2016

Diamonds closer to becoming ideal semiconductors

Diamonds closer to becoming ideal semiconductors

Researchers find new method for doping single crystals of diamond



Along with being a "girl's best friend," diamonds also have remarkable properties that could make them ideal semiconductors. This is welcome news for electronics; semiconductors are needed to meet the rising demand for more efficient electronics that deliver and convert power.
The thirst for electronics is unlikely to cease and almost every appliance or device requires a suite of electronics that transfer, convert and control power. Now, researchers have taken an important step toward that technology with a new way to dope single crystals of diamonds, a crucial process for building electronic devices.
"We need the devices to manipulate the power in the way that we want," said Zhengqiang (Jack) Ma, an electrical and computer engineering professor at the University of Wisconsin-Madison. He and his colleagues describe their new method in the Journal of Applied Physics, from AIP Publishing.
For power electronics, diamonds could serve as the perfect material. They are thermally conductive, which means diamond-based devices would dissipate heat quickly and easily, foregoing the need for bulky and expensive methods for cooling. Diamond can also handle high voltages and power. Electrical currents also flow through diamonds quickly, meaning the material would make for energy efficient devices.
But among the biggest challenges to making diamond-based devices is doping, a process in which other elements are integrated into the semiconductor to change its properties. Because of diamond's rigid crystalline structure, doping is difficult.
Currently, you can dope diamond by coating the crystal with boron and heating it to 1450 degrees Celsius. But it's difficult to remove the boron coating at the end. This method only works on diamonds consisting of multiple crystals stuck together. Because such polydiamonds have irregularities between the crystals, single-crystals would be superior semiconductors.
You can dope single crystals by injecting boron atoms while growing the crystals artificially. The problem is the process requires powerful microwaves that can degrade the quality of the crystal.
Now, Ma and his colleagues have found a way to dope single-crystal diamonds with boron at relatively low temperatures and without any degradation. The researchers discovered if you bond a single-crystal diamond with a piece of silicon doped with boron, and heat it to 800 degrees Celsius, which is low compared to the conventional techniques, the boron atoms will migrate from the silicon to the diamond. It turns out that the boron-doped silicon has defects such as vacancies, where an atom is missing in the lattice structure. Carbon atoms from the diamond will fill those vacancies, leaving empty spots for boron atoms.
This technique also allows for selective doping, which means more control when making devices. You can choose where to dope a single-crystal diamond simply by bonding the silicon to that spot.
The new method only works for P-type doping, where the semiconductor is doped with an element that provides positive charge carriers (in this case, the absence of electrons, called holes).
"We feel like we found a very easy, inexpensive, and effective way to do it," Ma said. The researchers are already working on a simple device using P-type single-crystal diamond semiconductors.
But to make electronic devices like transistors, you need N-type doping that gives the semiconductor negative charge carriers (electrons). And other barriers remain. Diamond is expensive and single crystals are very small.
Still, Ma says, achieving P-type doping is an important step, and might inspire others to find solutions for the remaining challenges. Eventually, he said, single-crystal diamond could be useful everywhere -- perfect, for instance, for delivering power through the grid.

Story Source:
The above post is reprinted from materials provided by American Institute of PhysicsNote: Materials may be edited for content and length.

Journal Reference:
  1. Jung-Hun Seo, Henry Wu, Solomon Mikael, Hongyi Mi, James P. Blanchard, Giri Venkataramanan, Weidong Zhou, Shaoqin Gong, Dane Morgan and Zhenqiang Ma. Thermal diffusion boron doping of single-crystal natural diamondJournal of Applied Physics, May 24, 2016 DOI: 10.1063/1.4949327

Cite This Page:
American Institute of Physics. "Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond." ScienceDaily. ScienceDaily, 24 May 2016. <www.sciencedaily.com/releases/2016/05/160524121540.htm>

.

Tuesday, 24 May 2016

Engineers take first step toward flexible, wearable biosensor device

Engineers take first step toward flexible, wearable biosensor device


The Chem-Phys patch monitors both biochemical and electric signals in the human body at the same time -- a first


The ChemPhys patch can be worn on the chest, near the base of the sternum, and communicates wirelessly with a smartphone, smart watch or laptop.
Credit: Jacobs School of Engineering/UC San Diego
Engineers at the University of California San Diego have developed the first flexible wearable device capable of monitoring both biochemical and electric signals in the human body. The Chem-Phys patch records electrocardiogram (EKG) heart signals and tracks levels of lactate, a biochemical that is a marker of physical effort, in real time. The device can be worn on the chest and communicates wirelessly with a smartphone, smart watch or laptop. It could have a wide range of applications, from athletes monitoring their workouts to physicians monitoring patients with heart disease.
Nanoengineers and electrical engineers at the UC San Diego Center for Wearable Sensors worked together to build the device, which includes a flexible suite of sensors and a small electronic board. The device also can transmit the data from biochemical and electrical signals via Bluetooth.
Nanoengineering professor Joseph Wang and electrical engineering professor Patrick Mercier at the UC San Diego Jacobs School of Engineering led the project, with Wang's team working on the patch's sensors and chemistry, while Mercier's team worked on the electronics and data transmission. They describe the Chem-Phys patch in the May 23 issue ofNature Communications.
"One of the overarching goals of our research is to build a wearable tricorder-like device that can measure simultaneously a whole suite of chemical, physical and electrophysiological signals continuously throughout the day," Mercier said. "This research represents an important first step to show this may be possible."
Most commercial wearables only measure one signal, such as steps or heart rate, Mercier said. Almost none of them measure chemical signals, such as lactate.
That is the gap that the sensor designed by researchers at the Jacobs School of Engineering at UC San Diego aims to bridge. Combining information about heart rate and lactate--a first in the field of wearable sensors--could be especially useful for athletes wanting to improve their performance. Both Mercier and Wang have been fielding inquiries from Olympic athletes about the technologies the Center for Wearable Sensors produces.
"The ability to sense both EKG and lactate in a small wearable sensor could provide benefits in a variety of areas," explained Dr. Kevin Patrick, a physician and director of the Center for Wireless and Population Health Systems at UC San Diego, who was not involved with the research. "There would certainly be interest in the sports medicine community about how this type of sensing could help optimize training regimens for elite athletes," added Patrick, who is also a member of the Center for Wearable Sensors. "The ability to concurrently assess EKG and lactate could also open up some interesting possibilities in preventing and/or managing individuals with cardiovascular disease."
The researchers' biggest challenge was making sure that signals from the two sensors didn't interfere with each other. This required some careful engineering and a fair bit of experimentation before finding the right configuration for the sensors.
Making the patch
Researchers used screen printing to manufacture the patch on a thin, flexible polyester sheet that can be applied directly to the skin. An electrode to sense lactate was printed in the center of the patch, with two EKG electrodes bracketing it to the left and the right. Engineers went through several iterations of the patch to find the best distance between electrodes to avoid interference while gathering the best quality signal. They found that a distance of four centimeters (roughly 1.5 inches) between the EKG electrodes was optimal.
Researchers also had to make sure the EKG sensors were isolated from the lactate sensor. The latter works by applying a small voltage and measuring electric current across its electrodes. This current can pass through sweat, which is slightly conductive, and can potentially disrupt EKG measurements. So the researchers added a printed layer of soft water-repelling silicone rubber to the patch and configured it to keep the sweat away from the EKG electrodes, but not the lactate sensor.
The sensors were then connected to a small custom printed circuit board equipped with a microcontroller and a Bluetooth Low Energy chip, which wirelessly transmitted the data gathered by the patch to a smartphone or a computer.
Testing
The patch was tested on three male subjects, who wore the device on their chest, near the base of their sternum, while doing 15 to 30 minutes of intense activity on a stationary bike. Two of the subjects also wore a commercial wristband heart rate monitor. The data collected by the EKG electrodes on the patch closely matched the data collected by the commercial wristband. The data collected by the lactate biosensor follows closely data collected during increasing intensity workouts in other studies.
Next steps
Next steps include improving the way the patch and the board are connected and adding sensors for other chemical markers, such as magnesium and potassium, as well as other vital signs. Physicians working with Wang and Mercier are also excited about the possibility of analyzing the data from the two signals and see how they correlate.
A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring
Authors: Somayeh Imani,, Amay J. Bandodkar,, A.M.Vinu Mohan, Rajan Kumar, Shengfei Yu, Joseph Wang & Patrick P. Mercier, Departments of NanoEngineering and Electrical Engineering, Jacobs School of Engineering, UC San Diego
Funding from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (R21EB019698), Samsung and the Arnold and Mabel Beckman Foundation.

Story Source:
The above post is reprinted from materials provided by University of California - San DiegoNote: Materials may be edited for content and length.

Journal Reference:
  1. Somayeh Imani, Amay J. Bandodkar, A. M. Vinu Mohan, Rajan Kumar, Shengfei Yu, Joseph Wang & Patrick P. Mercier. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoringNature Communications, 2016 DOI:10.1038/ncomms11650

Cite This Page:
University of California - San Diego. "Engineers take first step toward flexible, wearable biosensor device: The Chem-Phys patch monitors both biochemical and electric signals in the human body at the same time -- a first." ScienceDaily. ScienceDaily, 23 May 2016. <www.sciencedaily.com/releases/2016/05/160523083612.htm>

.

Monday, 23 May 2016

New technique controls autonomous vehicles on a dirt track

New technique controls autonomous vehicles on a dirt track


Strategy helps self-driving, robotic vehicles maintain control at edge of handling limits


Georgia Tech researchers are using an electric-powered autonomous vehicle to help driverless vehicles maintain control at the edge of their handling limits. Shown (l-r) are Georgia Tech students Sarah Selim, Brian Goldfain, Paul Drews, Grady Williams.
Credit: Georgia Tech/Rob Felt
A Georgia Institute of Technology research team has devised a novel way to help keep a driverless vehicle under control as it maneuvers at the edge of its handling limits. The approach could help make self-driving cars of the future safer under hazardous road conditions.
Researchers from Georgia Tech's Daniel Guggenheim School of Aerospace Engineering (AE) and the School of Interactive Computing (IC) have assessed the new technology by racing, sliding, and jumping one-fifth-scale, fully autonomous auto-rally cars at the equivalent of 90 mph. The technique uses advanced algorithms and onboard computing, in concert with installed sensing devices, to increase vehicular stability while maintaining performance.
The work, tested at the Georgia Tech Autonomous Racing Facility, is sponsored by the U.S. Army Research Office. A paper covering this research was presented at the recent International Conference on Robotics and Automation (ICRA), held May 16-21.
"An autonomous vehicle should be able to handle any condition, not just drive on the highway under normal conditions," said Panagiotis Tsiotras, an AE professor who is an expert on the mathematics behind rally-car racing control. "One of our principal goals is to infuse some of the expert techniques of human drivers into the brains of these autonomous vehicles."
Traditional robotic-vehicle techniques use the same control approach whether a vehicle is driving normally or at the edge of roadway adhesion, Tsiotras explained. The Georgia Tech method -- known as model predictive path integral control (MPPI) -- was developed specifically to address the non-linear dynamics involved in controlling a vehicle near its friction limits.
Utilizing Advanced Concepts
"Aggressive driving in a robotic vehicle -- maneuvering at the edge -- is a unique control problem involving a highly complex system," said Evangelos Theodorou, an AE assistant professor who is leading the project. "However, by merging statistical physics with control theory, and utilizing leading-edge computation, we can create a new perspective, a new framework, for control of autonomous systems."
The Georgia Tech researchers used a stochastic trajectory-optimization capability, based on a path-integral approach, to create their MPPI control algorithm, Theodorou explained. Using statistical methods, the team integrated large amounts of handling-related information, together with data on the dynamics of the vehicular system, to compute the most stable trajectories from myriad possibilities.
Processed by the high-power graphics processing unit (GPU) that the vehicle carries, the MPPI control algorithm continuously samples data coming from global positioning system (GPS) hardware, inertial motion sensors, and other sensors. The onboard hardware-software system performs real-time analysis of a vast number of possible trajectories and relays optimal handling decisions to the vehicle moment by moment.
In essence, the MPPI approach combines both the planning and execution of optimized handling decisions into a single highly efficient phase. It's regarded as the first technology to carry out this computationally demanding task; in the past, optimal- control data inputs could not be processed in real time.
Fully Autonomous Vehicles
The researchers' two auto-rally vehicles -- custom built by the team -- utilize special electric motors to achieve the right balance between weight and power. The cars carry a motherboard with a quad-core processor, a potent GPU, and a battery.
Each vehicle also has two forward-facing cameras, an inertial measurement unit, and a GPS receiver, along with sophisticated wheel-speed sensors. The power, navigation, and computation equipment is housed in a rugged aluminum enclosure able to withstand violent rollovers. Each vehicle weighs about 48 pounds and is about three feet long.
These rolling robots are able to test the team's control algorithms without any need for off-vehicle devices or computation, except for a nearby GPS receiver. The onboard GPU lets the MPPI algorithm sample more than 2,500, 2.5-second-long trajectories in under 1/60 of a second.
An important aspect in the team's autonomous-control approach centers on the concept of "costs" -- key elements of system functionality. Several cost components must be carefully matched to achieve optimal performance.
In the case of the Georgia Tech vehicles, the costs consist of three main areas: the cost for staying on the track, the cost for achieving a desired velocity, and the cost of the control system. A sideslip-angle cost was also added to improve vehicle stability.
The cost approach is important to enabling a robotic vehicle to maximize speed while staying under control, explained James Rehg, a professor in the Georgia Tech School of Interactive Computing who is collaborating with Theodorou and Tsiotras.
It's a complex balancing act, Rehg said. For example, when the researchers reduced one cost term to try to prevent vehicle sliding, they found they got increased drifting behavior.
"What we're talking about here is using the MPPI algorithm to achieve relative entropy minimization -- and adjusting costs in the most effective way is a big part of that," he said. "To achieve the optimal combination of control and performance in an autonomous vehicle is definitely a non-trivial problem."

Story Source:
The above post is reprinted from materials provided by Georgia Institute of Technology. The original item was written by Rick Robinson. Note: Materials may be edited for content and length.

Cite This Page:
Georgia Institute of Technology. "New technique controls autonomous vehicles on a dirt track: Strategy helps self-driving, robotic vehicles maintain control at edge of handling limits." ScienceDaily. ScienceDaily, 23 May 2016. <www.sciencedaily.com/releases/2016/05/160523141240.htm>

.

Sunday, 22 May 2016

Fighting cancer with the help of someone else's immune cells

Fighting cancer with the help of someone else's immune cells



A human T-cell.
Credit: NIH
A new step in cancer immunotherapy: researchers from the Netherlands Cancer Institute and University of Oslo/Oslo University Hospital show that even if one's own immune cells cannot recognize and fight their tumors, someone else's immune cells might. Their proof of principle study is published in the journal Science on May 19th.
The study shows that adding mutated DNA from cancer cells into immune stimulating cells from healthy donors create an immune response in the healthy immune cells. Inserting the targeted components from the donor immune cells back into the immune cells of the cancer patients, the researchers were able to make cancer patients' own immune cells recognize cancer cells.
The extremely rapidly developing field of cancer immunotherapy aims to create technologies that help the body's own immune system to fight cancer. There are a number of possible causes that can prevent the immune system from controlling cancer cells. First, the activity of immune cells is controlled by many 'brakes' that can interfere with their function, and therapies that inactivate these brakes are now being tested in many human cancers. As a second reason, in some patients the immune system may not recognize the cancer cells as aberrant in the first place. As such, helping the immune system to better recognize cancer cells is one of the main focuses in cancer immunotherapy.
Ton Schumacher of the Netherlands Cancer Institute and Johanna Olweus of the University of Oslo and Oslo University Hospital decided to test whether a 'borrowed immune system' could "see" the cancer cells of the patient as aberrant. The recognition of aberrant cells is carried out by immune cells called T cells. All T cells in our body scan the surface of other cells, including cancer cells, to check whether they display any protein fragments on their surface that should not be there. Upon recognition of such foreign protein fragments, T cells kill the aberrant cells. As cancer cells harbor faulty proteins, they can also display foreign protein fragments -- also known as neo-antigens -- on their surface, much in the way virus-infected cells express fragments of viral proteins.
To address whether the T cells of a patient react to all the foreign protein fragments on cancer cells, the research teams first mapped all possible neo-antigens on the surface of melanoma cells from three different patients. In all 3 patients, the cancer cells seemed to display a large number of different neo-antigens. But when the researchers tried to match these to the T cells derived from within the patient's tumors, most of these aberrant protein fragments on the tumor cells went unnoticed.
Next, they tested whether the same neo-antigens could be seen by T-cells derived from healthy volunteers. Strikingly, these donor-derived T cells could detect a significant number of neo-antigens that had not been seen by the patients' T cells.
"In a way, our findings show that the immune response in cancer patients can be strengthened; there is more on the cancer cells that makes them foreign that we can exploit. One way we consider doing this is finding the right donor T cells to match these neo-antigens.," says Ton Schumacher. "The receptor that is used by these donor T-cells can then be used to genetically modify the patient's own T cells so these will be able to detect the cancer cells."
"Our study shows that the principle of outsourcing cancer immunity to a donor is sound. However, more work needs to be done before patients can benefit from this discovery. Thus, we need to find ways to enhance the throughput. We are currently exploring high-throughput methods to identify the neo-antigens that the T cells can "see" on the cancer and isolate the responding cells. But the results showing that we can obtain cancer-specific immunity from the blood of healthy individuals are already very promising," says Johanna Olweus.
This research was performed within the K.G.Jebsen Center for Cancer Immunotherapy, at the University of Oslo/ Oslo University Hospital and The Netherlands Cancer Institute.

Story Source:
The above post is reprinted from materials provided by Netherlands Cancer InstituteNote: Materials may be edited for content and length.

Journal Reference:
  1. E. Stronen, M. Toebes, S. Kelderman, M. M. van Buuren, W. Yang, N. van Rooij, M. Donia, M.-L. Boschen, F. Lund-Johansen, J. Olweus, T. N. Schumacher. Targeting of cancer neoantigens with donor-derived T cell receptor repertoiresScience, 2016; DOI: 10.1126/science.aaf2288

Cite This Page:

Netherlands Cancer Institute. "Fighting cancer with the help of someone else's immune cells." ScienceDaily. ScienceDaily, 19 May 2016. <www.sciencedaily.com/releases/2016/05/160519144556.htm>.